login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075318
Pair the odd numbers such that the k-th pair is (r, r+2k) where r is the smallest odd number not included earlier: (1,3),(5,9),(7,13),(11,19),(15,25),(17,29),(21,35),(23,39),(27,45),... This is the sequence of the second member of pairs.
5
3, 9, 13, 19, 25, 29, 35, 39, 45, 51, 55, 61, 67, 71, 77, 81, 87, 93, 97, 103, 107, 113, 119, 123, 129, 135, 139, 145, 149, 155, 161, 165, 171, 177, 181, 187, 191, 197, 203, 207, 213, 217, 223, 229, 233, 239, 245, 249, 255, 259, 265, 271, 275, 281, 285, 291, 297
OFFSET
1,1
COMMENTS
(A075317(n),a(n)) = (2*A(n)-1, 2*B(n)-1), where A and B are the basic Wythoff sequences A(n)=A000201(n) and B(n)=A001950(n). For a proof, see section 2 of the Carlitz et al. paper. - Michel Dekking, Sep 08 2016
LINKS
L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., Fibonacci representations, Fib. Quart. 10 (1972), 1-28.
FORMULA
a(n) = 2*floor(n*phi^2)-1, where phi=(1+sqrt(5))/2. - Michel Dekking, Sep 08 2016
MAPLE
A075318 := proc(nmax) local r, k, a, pairs ; a := [3] ; pairs := [1, 3] ; k := 2 ; r := 5 ; while nops(a) < nmax do while r in pairs do r := r+2 ; od ; if r+2*k in pairs then printf("inconsistency", k) ; fi ; a := [op(a), r+2*k] ; pairs := [op(pairs), r, r+2*k] ; k := k+1 ; od ; RETURN(a) ; end: a := A075318(200) : for n from 1 to nops(a) do printf("%d, ", op(n, a)) ; od ; # R. J. Mathar, Nov 12 2006
MATHEMATICA
Table[2 Floor[n ((1 + Sqrt[5]) / 2)^2] - 1, {n, 60}] (* Vincenzo Librandi, Sep 08 2016 *)
2*Floor[Range[60]GoldenRatio^2]-1 (* Harvey P. Dale, Feb 08 2020 *)
PROG
(Magma) [2*Floor(n*((1+Sqrt(5))/2)^2)-1: n in [1..60]]; // Vincenzo Librandi, Sep 08 2016
(PARI) a(n)=localbitprec(logint(sqrtint(45*n^4)+5*n^2, 2)+2); 2*floor(n*(sqrt(5)+1)/2+n)-1 \\ Charles R Greathouse IV, Sep 09 2016
(Python)
from math import isqrt
def A075318(n): return (n+isqrt(5*n**2)&-2)+(n<<1)-1 # Chai Wah Wu, Aug 16 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Sep 14 2002
EXTENSIONS
More terms from R. J. Mathar, Nov 12 2006
STATUS
approved