The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190745 n+[ns/r]+[nt/r]+[nu/r]+[nv/r]+[nw/r], where r=sinh(1), s=cosh(1), t=tanh(1), u=csch(1), v=sech(1), w=coth(1). 6
 3, 9, 13, 19, 24, 29, 35, 40, 45, 52, 57, 61, 68, 73, 77, 83, 89, 94, 99, 105, 110, 115, 120, 126, 131, 137, 142, 148, 152, 158, 164, 169, 174, 179, 185, 191, 195, 200, 207, 211, 216, 223, 228, 233, 239, 244, 249, 255, 260, 265, 270, 276, 282, 286, 292, 297, 302, 307, 313, 319, 325, 330, 334, 341, 346, 350, 355, 362, 367, 372, 379 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is one of six sequences that partition the positive integers. In general, suppose that r, s, t, u, v, w are positive real numbers for which the sets {i/r : i>=1}, {j/s : j>=1}, {k/t : k>=1, {h/u : h>=1}, {p/v : p>=1}, {q/w : q>=1} are pairwise disjoint. Let a(n) be the rank of n/r when all the numbers in the six sets are jointly ranked. Define b(n), c(n), d(n), e(n), f(n) as the ranks of n/s, n/t, n/u, n/v, n/w respectively. It is easy to prove that a(n)=n+[ns/r]+[nt/r]+[nu/r]+[nv/r]+[nw/r], b(n)=[nr/s]+[nt/s]+[nu/s]+[nv/s]+[nw/s], c(n)=[nr/t]+[ns/t]+[nu/t]+[nv/t]+[nw/t], d(n)=n+[nr/u]+[ns/u]+[nt/u]+[nv/u]+[nw/u], e(n)=n+[nr/v]+[ns/v]+[nt/v]+[nu/v]+[nw/v], f(n)=n+[nr/w]+[ns/w]+[nt/w]+[nu/w]+[nv/w], where []=floor. Choosing r=sinh(1), s=cosh(1), t=tanh(1), u=csch(1), v=sech(1), w=coth(1) gives a=A190745, b=A190746, c=A190747, d=A190748, e=A190749, f=A190750. LINKS Table of n, a(n) for n=1..71. MATHEMATICA r = Sinh[1]; s = Cosh[1]; t = Tanh[1]; u = 1/r; v = 1/s; w = 1/t; p[n_, h_, k_] := Floor[n*h/k] a[n_] := n + p[n, s, r] + p[n, t, r] + p[n, u, r] + p[n, v, r] + p[n, w, r] b[n_] := n + p[n, r, s] + p[n, t, s] + p[n, u, s] + p[n, v, s] + p[n, w, s] c[n_] := n + p[n, r, t] + p[n, s, t] + p[n, u, t] + p[n, v, t] + p[n, w, t] d[n_] := n + p[n, r, u] + p[n, s, u] + p[n, t, u] + p[n, v, u] + p[n, w, u] e[n_] := n + p[n, r, v] + p[n, s, v] + p[n, t, v] + p[n, u, v] + p[n, w, v] f[n_] := n + p[n, r, w] + p[n, s, w] + p[n, t, w] + p[n, u, w] + p[n, v, w] Table[a[n], {n, 1, 120}] (*A190745*) Table[b[n], {n, 1, 120}] (*A190746*) Table[c[n], {n, 1, 120}] (*A190747*) Table[d[n], {n, 1, 120}] (*A190748*) Table[e[n], {n, 1, 120}] (*A190749*) Table[f[n], {n, 1, 120}] (*A190750*) CROSSREFS Cf. A190746-A190750. Sequence in context: A240240 A032415 A268044 * A075318 A171101 A287184 Adjacent sequences: A190742 A190743 A190744 * A190746 A190747 A190748 KEYWORD nonn AUTHOR Clark Kimberling, May 18 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 13:56 EDT 2024. Contains 372861 sequences. (Running on oeis4.)