login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073853
Indices of zeros in A079777.
3
0, 5, 9, 12, 24, 45, 60, 65, 179, 764, 1268, 5891, 16135, 29909, 71774, 173310, 200040, 1454560, 2485272, 86430343, 92439810, 115854652, 7208007982, 17016737751, 17589706947, 24531053552, 33113576855, 80692537585, 234365843350, 266484243960, 285357252641, 426388494035, 975986718040, 1505420538689, 43633539697333
OFFSET
1,2
COMMENTS
Let b(1) = b(2) = 1, b(k) = (b(k-1) + b(k-2)) mod k; sequence gives n such that b(n) = 0.
A079777(2^31-1) = 1103802855, and A079777(2^31) = 2117709557.
No further terms below k = 5*10^10, at which point, A079777(k-1) = 6059364906669 and A079777(k) = 29451014544130. - Luca Armstrong, Apr 07 2023
LINKS
EXAMPLE
b(3) = 2 mod 3 = 2; b(4) = (2+1) mod 4 = 3; b(5) = (3+2) mod 5 = 0, hence a(1) = 5.
MATHEMATICA
a = 0; b = 1; lst = {0}; Do[c = Mod[a + b, n]; If[c == 0, AppendTo[lst, n]; Print@n]; a = b; b = c, {n, 2, 2^31}] (* Robert G. Wilson v *)
PROG
(Java) class A073853 { public static void main(String [] args) { BigInteger an = BigInteger.ZERO ; BigInteger an1 = BigInteger.ONE ; BigInteger n = new BigInteger("2") ; for( ; ; n = n.add(BigInteger.ONE) ) { BigInteger an2 = an.add(an1).mod(n) ; if ( an2.compareTo(BigInteger.ZERO) == 0 ) System.out.println(n) ; an = an1 ; an1 = an2 ; } } } // R. J. Mathar, Dec 06 2009
CROSSREFS
A079777(n) = 0.
Sequence in context: A314649 A314650 A220187 * A070370 A277617 A103703
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Sep 02 2002
EXTENSIONS
Corrected and extended by John W. Layman, Jun 11 2003
a(23)-a(26) from Zak Seidov; a(27)-a(28) from John W. Layman; a(29)-a(34) from Charles R Greathouse IV, Dec 09 2009. (These new terms were added by N. J. A. Sloane, Dec 20 2009.)
a(35) from Luca Armstrong, Apr 07 2023
STATUS
approved