login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070370
a(n) = 5^n mod 16.
2
1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1
OFFSET
0,2
COMMENTS
Period 4: repeat [1, 5, 9, 13].
FORMULA
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-4) for n>3.
G.f.: ( 1+5*x+9*x^2+13*x^3 ) / ( (1-x)*(1+x)*(1+x^2) ). (End)
a(n) = 7-2*((1+I)*(-I)^n+(1-I)*I^n+(-1)^n). - Bruno Berselli, Feb 07 2011
E.g.f.: 5*cosh(x) + 9*sinh(x) - 4*cos(x) - 4*sin(x). - G. C. Greubel, Mar 05 2016
a(n) = A130909(A000351(n)). - Michel Marcus, Jul 06 2016
MAPLE
seq(op([1, 5, 9, 13]), n=0..50); # Wesley Ivan Hurt, Jul 06 2016
MATHEMATICA
Table[Mod[5^n, 16], {n, 0, 100}] (* G. C. Greubel, Mar 05 2016 *)
PROG
(Sage) [power_mod(5, n, 16)for n in range(0, 93)] # Zerinvary Lajos, Nov 26 2009
(PARI) a(n) = lift(Mod(5, 16)^n); \\ Michel Marcus, Mar 05 2016
(Magma) &cat [[1, 5, 9, 13]^^30]; // Wesley Ivan Hurt, Jul 06 2016
CROSSREFS
Sequence in context: A314650 A220187 A073853 * A277617 A103703 A143706
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 12 2002
STATUS
approved