login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 5^n mod 16.
2

%I #42 Dec 14 2023 05:12:20

%S 1,5,9,13,1,5,9,13,1,5,9,13,1,5,9,13,1,5,9,13,1,5,9,13,1,5,9,13,1,5,9,

%T 13,1,5,9,13,1,5,9,13,1,5,9,13,1,5,9,13,1,5,9,13,1,5,9,13,1,5,9,13,1,

%U 5,9,13,1,5,9,13,1,5,9,13,1,5,9,13,1,5,9,13,1,5,9,13,1,5,9,13,1,5,9,13,1

%N a(n) = 5^n mod 16.

%C Period 4: repeat [1, 5, 9, 13].

%H G. C. Greubel, <a href="/A070370/b070370.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,1). [_R. J. Mathar_, Apr 20 2010]

%F From _R. J. Mathar_, Apr 20 2010: (Start)

%F a(n) = a(n-4) for n>3.

%F G.f.: ( 1+5*x+9*x^2+13*x^3 ) / ( (1-x)*(1+x)*(1+x^2) ). (End)

%F a(n) = 7-2*((1+I)*(-I)^n+(1-I)*I^n+(-1)^n). - _Bruno Berselli_, Feb 07 2011

%F E.g.f.: 5*cosh(x) + 9*sinh(x) - 4*cos(x) - 4*sin(x). - _G. C. Greubel_, Mar 05 2016

%F a(n) = A130909(A000351(n)). - _Michel Marcus_, Jul 06 2016

%p seq(op([1, 5, 9, 13]), n=0..50); # _Wesley Ivan Hurt_, Jul 06 2016

%t Table[Mod[5^n, 16], {n, 0, 100}] (* _G. C. Greubel_, Mar 05 2016 *)

%o (Sage) [power_mod(5,n,16)for n in range(0,93)] # _Zerinvary Lajos_, Nov 26 2009

%o (PARI) a(n) = lift(Mod(5, 16)^n); \\ _Michel Marcus_, Mar 05 2016

%o (Magma) &cat [[1, 5, 9, 13]^^30]; // _Wesley Ivan Hurt_, Jul 06 2016

%Y Cf. A000351, A130909.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, May 12 2002