login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073185
Sum of cubefree divisors of n.
7
1, 3, 4, 7, 6, 12, 8, 7, 13, 18, 12, 28, 14, 24, 24, 7, 18, 39, 20, 42, 32, 36, 24, 28, 31, 42, 13, 56, 30, 72, 32, 7, 48, 54, 48, 91, 38, 60, 56, 42, 42, 96, 44, 84, 78, 72, 48, 28, 57, 93, 72, 98, 54, 39, 72, 56, 80, 90, 60, 168, 62, 96, 104, 7, 84, 144, 68, 126, 96, 144, 72
OFFSET
1,2
COMMENTS
Sum of divisors of the cubefree kernel of n (see first formula).
LINKS
FORMULA
a(n) = A000203(A007948(n)).
a(n) <= A073183(n).
Multiplicative with a(p) = 1+p, a(p^e) = 1 + p + p^2, e>1. - Christian G. Bower, May 18 2005
a(n) = sum(A212793(A027750(n,k)) * A027750(n,k): k=1..A000005(n)). - Reinhard Zumkeller, May 27 2012
Dirichlet g.f.: zeta(s)*zeta(s-1)/zeta(3s-3). - R. J. Mathar, Apr 12 2011
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (12*Zeta(3)). - Vaclav Kotesovec, Feb 01 2019
EXAMPLE
The divisors of 56 are {1, 2, 4, 7, 8, 14, 28, 56}, 8=2^3 and 56=7*2^3 are not cubefree, therefore a(56) = 1 + 2 + 4 + 7 + 14 + 28 = 56.
MAPLE
charFfree := proc(n, t) local f; for f in ifactors(n)[2] do if op(2, f) >= t then return 0 ; end if; end do: return 1 ; end proc:
A073185 := proc(n) add( d*charFfree(d, 3), d =numtheory[divisors](n) ); end proc: # R. J. Mathar, Apr 12 2011
MATHEMATICA
nn = 71; f[list_, i_] := list[[i]]; a =Table[If[Max[FactorInteger[n][[All, 2]]] <= 2, n, 0], {n, 1, nn}]; b = Table[1, {nn}]; Select[Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}], # > 0 &] (* Geoffrey Critzer, Mar 22 2015 *)
f[p_, e_] := 1 + p + If[e > 1, p^2, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
PROG
(Haskell)
a073185 = sum . filter ((== 1) . a212793) . a027750_row
-- Reinhard Zumkeller, May 27 2012
(PARI) a(n) = {my(f=factor(n)); for (i=1, #f~, p = f[i, 1]; if ((e=f[i, 2]) == 1, f[i, 1] = 1+p, f[i, 1] = 1+p+p^2); f[i, 2] = 1; ); factorback(f); } \\ Michel Marcus, Feb 06 2015
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Reinhard Zumkeller, Jul 19 2002
EXTENSIONS
Incorrect comment removed by Álvar Ibeas, Feb 06 2015
STATUS
approved