login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072182 A Wallis pair (x,y) satisfies sigma(x^2) = sigma(y^2); sequence gives x's for Wallis pairs with x < y (ordered by values of x, then y). 5
4, 12, 28, 36, 44, 52, 68, 76, 84, 92, 108, 116, 124, 132, 148, 156, 164, 172, 188, 196, 204, 212, 228, 236, 244, 252, 268, 276, 284, 292, 308, 316, 324, 326, 332, 348, 356, 364, 372, 388, 396, 404, 406, 412, 428, 436, 444, 452, 468, 476, 484, 492, 508, 516 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

4*A045572 is included in this sequence. - Benoit Cloitre, Oct 22 2002

D. Johnson remarks that some terms are repeated, e.g., a(139)=a(140)=1284 forms a Wallis pair with A072186(139)=1528 and also with A072186(140)=1605. - M. F. Hasler, Sep 15 2013

REFERENCES

I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.

LINKS

Donovan Johnson, Table of n, a(n) for n = 1..10000

EXAMPLE

The first few pairs are all multiples of the first pair (4,5): (4, 5), (12, 15), (28, 35), (36, 45), (44, 55), (52, 65), ...

MATHEMATICA

w = {}; m = 550;

Do[q = DivisorSigma[1, x^2]; sq = Sqrt[q] // Floor; Do[If[q == DivisorSigma[1, y^2], AppendTo[w, {x, y}]], {y, x+1, sq}], {x, 1, m}];

w[[All, 1]] (* Jean-Fran├žois Alcover, Oct 01 2019 *)

PROG

(PARI) {w=[]; m=550; for(x=1, m, q=sigma(x^2); sq=sqrtint(q); for(y=x+1, sq, if(q==sigma(y^2), w=concat(w, [[x, y]])))); for(j=1, matsize(w)[2], print1(w[j][1], ", "))}

(Haskell)

a072182 n = a072182_list !! (n-1)

(a072182_list, a072186_list) = unzip wallisPairs

  wallisPairs = [(x, y) | (y, sy) <- tail ws,

                          (x, sx) <- takeWhile ((< y) . fst) ws, sx == sy]

                where ws = zip [1..] $ map a000203 $ tail a000290_list

-- Reinhard Zumkeller, Sep 17 2013

CROSSREFS

Cf. A072186, A075768, A075769.

Cf. A000203, A000290.

Sequence in context: A212522 A207408 A064444 * A009906 A194432 A220512

Adjacent sequences:  A072179 A072180 A072181 * A072183 A072184 A072185

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Oct 19 2002

EXTENSIONS

Extended by Klaus Brockhaus and Benoit Cloitre, Oct 22 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 08:47 EDT 2019. Contains 328292 sequences. (Running on oeis4.)