Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Oct 01 2019 09:13:13
%S 4,12,28,36,44,52,68,76,84,92,108,116,124,132,148,156,164,172,188,196,
%T 204,212,228,236,244,252,268,276,284,292,308,316,324,326,332,348,356,
%U 364,372,388,396,404,406,412,428,436,444,452,468,476,484,492,508,516
%N A Wallis pair (x,y) satisfies sigma(x^2) = sigma(y^2); sequence gives x's for Wallis pairs with x < y (ordered by values of x, then y).
%C 4*A045572 is included in this sequence. - _Benoit Cloitre_, Oct 22 2002
%C D. Johnson remarks that some terms are repeated, e.g., a(139)=a(140)=1284 forms a Wallis pair with A072186(139)=1528 and also with A072186(140)=1605. - _M. F. Hasler_, Sep 15 2013
%D I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.
%H Donovan Johnson, <a href="/A072182/b072182.txt">Table of n, a(n) for n = 1..10000</a>
%e The first few pairs are all multiples of the first pair (4,5): (4, 5), (12, 15), (28, 35), (36, 45), (44, 55), (52, 65), ...
%t w = {}; m = 550;
%t Do[q = DivisorSigma[1, x^2]; sq = Sqrt[q] // Floor; Do[If[q == DivisorSigma[1, y^2], AppendTo[w, {x, y}]], {y, x+1, sq}], {x, 1, m}];
%t w[[All, 1]] (* _Jean-François Alcover_, Oct 01 2019 *)
%o (PARI) {w=[]; m=550; for(x=1,m,q=sigma(x^2); sq=sqrtint(q); for(y=x+1,sq,if(q==sigma(y^2), w=concat(w,[[x,y]])))); for(j=1,matsize(w)[2],print1(w[j][1],","))}
%o (Haskell)
%o a072182 n = a072182_list !! (n-1)
%o (a072182_list, a072186_list) = unzip wallisPairs
%o wallisPairs = [(x, y) | (y, sy) <- tail ws,
%o (x, sx) <- takeWhile ((< y) . fst) ws, sx == sy]
%o where ws = zip [1..] $ map a000203 $ tail a000290_list
%o -- _Reinhard Zumkeller_, Sep 17 2013
%Y Cf. A072186, A075768, A075769.
%Y Cf. A000203, A000290.
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_, Oct 19 2002
%E Extended by _Klaus Brockhaus_ and _Benoit Cloitre_, Oct 22 2002