login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072186
A Wallis pair (x,y) satisfies sigma(x^2) = sigma(y^2); sequence gives y's for Wallis pairs with x < y (ordered by values of x).
5
5, 15, 35, 45, 55, 65, 85, 95, 105, 115, 135, 145, 155, 165, 185, 195, 205, 215, 235, 245, 255, 265, 285, 295, 305, 315, 335, 345, 355, 365, 385, 395, 405, 407, 415, 435, 445, 455, 465, 485, 495, 505, 489, 515, 535, 545, 555, 565, 585, 595, 605, 615, 635
OFFSET
1,1
COMMENTS
5*A045572 is included in this sequence. - Benoit Cloitre, Oct 22 2002
REFERENCES
I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.
LINKS
EXAMPLE
The first few pairs are all multiples of the first pair (4,5): (4, 5), (12, 15), (28, 35), (36, 45), (44, 55), (52, 65), ...
MATHEMATICA
w = {}; m = 550;
Do[q = DivisorSigma[1, x^2]; sq = Sqrt[q] // Floor; Do[If[q == DivisorSigma[1, y^2], AppendTo[w, {x, y}]], {y, x + 1, sq}], {x, 1, m}];
w[[All, 2]] (* Jean-François Alcover, Oct 01 2019 *)
PROG
(PARI) {w=[]; m=550; for(x=1, m, q=sigma(x^2); sq=sqrtint(q); for(y=x+1, sq, if(q==sigma(y^2), w=concat(w, [[x, y]])))); for(j=1, matsize(w)[2], print1(w[j][2], ", "))}
(Haskell)
a072186 n = a072186_list !! (n-1)
-- a072186_list defined in A072182. -- Reinhard Zumkeller, Sep 18 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 19 2002
EXTENSIONS
Extended by Klaus Brockhaus and Benoit Cloitre, Oct 22 2002
STATUS
approved