login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A346752 Expansion of e.g.f. log( 1 + x^4 * exp(x) / 4! ). 4
0, 0, 0, 0, 1, 5, 15, 35, 35, -504, -6090, -45870, -265155, -990275, 2733731, 113064315, 1571621870, 15859846380, 116145112140, 289646855916, -9965576133855, -255337210989315, -4024508801328785, -47031887951290165, -338016913616223534, 1717029492398463650 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
LINKS
FORMULA
a(0) = 0; a(n) = binomial(n,4) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * binomial(n-k,4) * k * a(k).
a(n) = n! * Sum_{k=1..floor(n/4)} (-1)^(k-1) * k^(n-4*k-1)/(24^k * (n-4*k)!). - Seiichi Manyama, Dec 14 2023
MATHEMATICA
nmax = 25; CoefficientList[Series[Log[1 + x^4 Exp[x]/4!], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 0; a[n_] := a[n] = Binomial[n, 4] - (1/n) Sum[Binomial[n, k] Binomial[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 25}]
CROSSREFS
Sequence in context: A083049 A015627 A156778 * A292955 A295005 A072186
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 01 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 14:00 EDT 2024. Contains 374499 sequences. (Running on oeis4.)