OFFSET
0,5
FORMULA
a(0) = 0; a(n) = binomial(n,3) + (1/n) * Sum_{k=1..n-1} binomial(n,k) * binomial(n-k,3) * k * a(k).
a(n) ~ (n-1)! / (3*LambertW(2^(1/3)/3^(2/3)))^n. - Vaclav Kotesovec, Aug 08 2021
a(n) = n! * Sum_{k=1..floor(n/3)} k^(n-3*k-1)/(6^k * (n-3*k)!). - Seiichi Manyama, Dec 14 2023
MATHEMATICA
nmax = 23; CoefficientList[Series[-Log[1 - x^3 Exp[x]/3!], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 0; a[n_] := a[n] = Binomial[n, 3] + (1/n) Sum[Binomial[n, k] Binomial[n - k, 3] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 01 2021
STATUS
approved