login
A346755
Expansion of e.g.f. -log( 1 - x^4 * exp(x) / 4! ).
3
0, 0, 0, 0, 1, 5, 15, 35, 105, 756, 6510, 46530, 289245, 1892605, 16187171, 170721915, 1833783770, 18875258780, 196470797580, 2255939795436, 29179692064545, 401813199660285, 5612352516200815, 79620308330422475, 1182881543312932386
OFFSET
0,6
FORMULA
a(0) = 0; a(n) = binomial(n,4) + (1/n) * Sum_{k=1..n-1} binomial(n,k) * binomial(n-k,4) * k * a(k).
a(n) ~ (n-1)! / (4*LambertW(3^(1/4)/2^(5/4)))^n. - Vaclav Kotesovec, Aug 08 2021
a(n) = n! * Sum_{k=1..floor(n/4)} k^(n-4*k-1)/(24^k * (n-4*k)!). - Seiichi Manyama, Dec 14 2023
MATHEMATICA
nmax = 24; CoefficientList[Series[-Log[1 - x^4 Exp[x]/4!], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 0; a[n_] := a[n] = Binomial[n, 4] + (1/n) Sum[Binomial[n, k] Binomial[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 24}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 01 2021
STATUS
approved