login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071989
a(n) = n-th decimal digit of the fractional part of the square root of the n-th nonsquare number (A000037).
2
4, 3, 6, 4, 5, 7, 6, 9, 5, 4, 7, 7, 6, 8, 3, 3, 0, 4, 5, 9, 8, 3, 3, 0, 8, 9, 6, 2, 4, 1, 0, 4, 4, 0, 6, 7, 9, 5, 1, 7, 4, 1, 3, 5, 7, 5, 7, 7, 4, 8, 8, 9, 5, 0, 5, 0, 6, 5, 1, 7, 3, 3, 9, 9, 7, 7, 6, 1, 4, 9, 9, 2, 7, 8, 5, 8, 4, 9, 4, 5, 4, 2, 8, 0, 2, 1, 7, 7, 4, 7, 4, 8, 1, 8, 4, 5, 7, 5, 8, 0, 0, 0, 1, 4, 3
OFFSET
1,1
COMMENTS
Regarded as a decimal fraction, 0.43645769547768330... is likely to be an irrational number.
REFERENCES
Martin Aigner & Günter M. Ziegler, Proofs from THE BOOK, Second Edition, Springer-Verlag, Berlin Heidelberg NY, Section of Analysis, Chptr 15, "Sets, function, and the continuum hypothesis", 2000, pp. 87-98.
Georg Cantor, Über eine Eigenschaft des Inbegriffes aller reellen Zahlen ("On the Characteristic Property of All Real Numbers").
Timothy Gowers, Editor, with June Barrow-Green & Imre Leader, Assc. Editors, The Princeton Companion to Mathematics, Princeton Un. Press, Princeton & Oxford, 2008, pp. 171 & 779.
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §7.5 Transfinite Numbers, pp. 257-262.
FORMULA
a(n) = floor(sqrt(A000037(n))*10^n) mod 10. - Jason Yuen, Aug 20 2024
EXAMPLE
Sqrt(2)=1.4142135... -> the 1st decimal digit is 4,
sqrt(3)=1.7320508... -> the 2nd decimal digit is 3,
sqrt(5)=2.2360679... -> the 3rd decimal digit is 6,
sqrt(6)=2.4494897... -> the 4th decimal digit is 4, etc.
MATHEMATICA
q[n_] := (m = Floor[n + Sqrt[n + Sqrt[n]]]; Floor[ Mod[ 10^n*Sqrt[m], 10]]); Table[ q[n], {n, 1, 105}]
PROG
(Python)
from math import isqrt
def A071989(n): return isqrt(10**(n<<1)*(n+(k:=isqrt(n))+int(n>=k*(k+1)+1)))%10 # Chai Wah Wu, Jul 20 2024
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Jun 17 2002
STATUS
approved