login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070982 Smallest integer k such that n divides sigma(k). 10
1, 3, 2, 3, 8, 5, 4, 7, 10, 19, 43, 6, 9, 12, 8, 21, 67, 10, 37, 19, 20, 43, 137, 14, 149, 45, 34, 12, 173, 24, 16, 21, 86, 67, 76, 22, 73, 37, 18, 27, 163, 20, 257, 43, 40, 137, 281, 33, 52, 149, 101, 63, 211, 34, 109, 28, 49, 173, 353, 24, 169, 48, 32, 93, 72, 86, 401 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Ivan Neretin, Table of n, a(n) for n = 1..10000

József Sándor, The sum-of-divisors minimum and maximum functions, Research Report Collection, Volume 8, Issue 1, 2005. See p. 3.

FORMULA

a(n) = min( k : sigma(k) == 0 mod(n) ).

Sum(k=1, n, a(k)) seems to be asymptotic to c*n^2 with probably 1.1 < c < 1.2.

By Xylouris' form of Linnk's theorem, a(n) << n^5. Can this be improved? - Charles R Greathouse IV, Mar 09 2017

MATHEMATICA

a = ConstantArray[1, 67]; k = 1; While[Length[vac = Rest[Flatten[Position[a, 1]]]] > 0, k++; a[[Intersection[Divisors[DivisorSigma[1, k]], vac]]] *= k]; a (* Ivan Neretin, May 15 2015 *)

With[{dsk=Table[{k, DivisorSigma[1, k]}, {k, 500}]}, Table[SelectFirst[ dsk, Divisible[#[[2]], n]&], {n, 70}]][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 04 2018 *)

PROG

(PARI) a(n)=my(s); while(sigma(s++)%n, ); s

CROSSREFS

Right diagonal of A074625.

Cf. A005179 (analog for number of divisors), A061026 (analog for Euler totient).

Sequence in context: A227470 A218396 A331926 * A275520 A187153 A213265

Adjacent sequences:  A070979 A070980 A070981 * A070983 A070984 A070985

KEYWORD

nonn,look

AUTHOR

Benoit Cloitre, May 24 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 21:52 EDT 2020. Contains 334671 sequences. (Running on oeis4.)