login
A070980
Numbers k such that the number of steps to reach 1 in '3x+1' problem equals tau(k), the number of divisors of k.
1
40, 42, 96, 180, 280, 1664, 1704, 1932, 1960, 2184, 2304, 2310, 4816, 4928, 7252, 9360, 9792, 12888, 12896, 13338, 13720, 14256, 15792, 16240, 17408, 17940, 17952, 18096, 20000, 20016, 21200, 21450, 25080, 25600, 27136, 28980, 30016, 31808, 34048, 34240, 34320, 34368, 35028, 36576, 36652, 37332, 38088, 39936, 45056, 47880
OFFSET
1,1
COMMENTS
Are all terms even?
Numbers k such that A006577(k) = A000005(k).
Not all terms are even. In the first 200 terms, three are odd: 82485, 91665, and 337365. - Harvey P. Dale, Feb 16 2014
LINKS
MATHEMATICA
nsQ[n_]:=Length[NestWhileList[If[EvenQ[#], #/2, 3#+1]&, n, #!=1&]]-1 == DivisorSigma[ 0, n]; Select[Range[50000], nsQ] (* Harvey P. Dale, Feb 15 2014 *)
PROG
(PARI) for(n=1, 40000, s=n; t=0; while(s!=1, t++; if(s%2==0, s=s/2, s=3*s+1); if(s==if(numdiv(n)-t, 0, 1), print1(n, ", "); ); ))
CROSSREFS
Sequence in context: A128843 A214563 A111167 * A131535 A118473 A118635
KEYWORD
nonn
AUTHOR
Benoit Cloitre and Boris Gourevitch (boris(AT)pi314.net), May 17 2002
EXTENSIONS
Corrected and extended by Harvey P. Dale, Feb 15 2014
STATUS
approved