The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061026 Smallest number m such that phi(m) is divisible by n, where phi = Euler totient function A000010. 9
 1, 3, 7, 5, 11, 7, 29, 15, 19, 11, 23, 13, 53, 29, 31, 17, 103, 19, 191, 25, 43, 23, 47, 35, 101, 53, 81, 29, 59, 31, 311, 51, 67, 103, 71, 37, 149, 191, 79, 41, 83, 43, 173, 69, 181, 47, 283, 65, 197, 101, 103, 53, 107, 81, 121, 87, 229, 59, 709, 61, 367, 311, 127, 85 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES M. J. Knight, Comment with Solution to 10837, American Mathematical Monthly, 2001. LINKS T. D. Noe, Table of n, a(n) for n=1..1000 Ho-joo Lee and Gerald Myerson, Consecutive Integers Whose Totients Are Multiples of n: 10837, The American Mathematical Monthly, Vol. 110, No. 2 (Feb., 2003), pp. 158-159. P. Moree, On an arithmetical function related to Euler's totient and the discriminator Fib. Quart. (1995). József Sándor, On the Euler minimum and maximum functions, Notes on Number Theory and Discrete Mathematics, Volume 15, 2009, Number 3, Pages 1—8. FORMULA Sequence is unbounded; a(n) <= n^2 since phi(n^2) is always divisible by n. If n+1 is prime a(n)=n+1. a(n) = min( k : phi(k) == 0 mod(n) ) EXAMPLE a(48) = 65 because phi(65) = phi(5)phi(13) = (4)(12) = 48 and no smaller integer has phi(n) = 48. MATHEMATICA a = ConstantArray[1, 64]; k = 1; While[Length[vac = Rest[Flatten[Position[a, 1]]]] > 0, k++; a[[Intersection[Divisors[EulerPhi[k]], vac]]] *= k]; a  (* Ivan Neretin, May 15 2015 *) PROG (PARI) for(n=1, 100, s=1; while(eulerphi(s)%n>0, s++); print1(s, ", ")) CROSSREFS Cf. A000010, A066674, A066675, A066676, A066678, A067005. Cf. A233516, A233517 (records). Cf. A005179 (analog for number of divisors), A070982 (analog for sum of divisors). Sequence in context: A088514 A254929 A066677 * A064632 A216487 A328984 Adjacent sequences:  A061023 A061024 A061025 * A061027 A061028 A061029 KEYWORD nonn AUTHOR Melvin J. Knight (knightmj(AT)juno.com), May 25 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 20:20 EDT 2020. Contains 333117 sequences. (Running on oeis4.)