login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070897
Number of ways of pairing numbers 1 to n with numbers n+1 to 2n such that each pair sums to a prime.
7
1, 1, 1, 1, 2, 4, 8, 36, 40, 49, 126, 121, 440, 2809, 11395, 32761, 132183, 881721, 3015500, 19642624, 106493895, 249987721, 1257922092, 4609187881, 29262161844, 189192811369, 1068996265025, 7388339422500, 67416357342087, 465724670229025, 1979950199225010
OFFSET
1,5
LINKS
FORMULA
a(n) = permanent(m), where the n X n matrix m is defined by m(i,j) = 1 or 0, depending on whether i+j+n is prime or composite, respectively. - T. D. Noe, Feb 10 2007
a(n) = A071058(n) * A071059(n).
EXAMPLE
a(5)=2 because there are two ways: 1+10, 2+9, 3+8, 4+7, 6+5 and 1+6, 2+9, 3+10, 4+7, 5+8.
MATHEMATICA
<<Combinatorica`; listQpart2[ n_ ] := {n-#, #}&/@Range[ Floor[ (n-1)/2 ] ]; Noe[ n_Integer ] := Module[ {it, permoid, po}, it=Union@Flatten[ Cases[ listQpart2[ # ], q_/; Max[ q ]<=2*n&&Max[ q ]>n ]& /@Select[ Range[ n+2, 3*n ], PrimeQ ], 1 ]; po=Position[ it, # ]&/@Range[ n ]; permoid=(Extract[ it, # ]-n)& /@(po /. {i_Integer, j_}->{i, 1} ); Length@Backtrack[ permoid, UnsameQ@@#&, Length[ # ]===n&, All ] ]; Noe/@Range[ 2, 16 ] (* from Wouter Meeussen *)
a[n_] := Permanent[Table[If[PrimeQ[i+j+n], 1, 0], {i, n}, {j, n}]]; Table[ an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 16}] (* Jean-François Alcover, Feb 26 2016 *)
PROG
(Haskell)
import Data.List (permutations)
a070897 n = length $ filter (all ((== 1) . a010051))
$ map (zipWith (+) [1..n]) (permutations [n+1..2*n])
-- Reinhard Zumkeller, Mar 19 2011, Apr 16 2011 (fixed)
(PARI) a(n)=my(a071058=matpermanent(matrix((n+1)\2, (n+1)\2, i, j, isprime((i+j-2)*2+n+3-(n%2))))); if(n%2==0, a071058^2, a071058*matpermanent(matrix(n\2, n\2, i, j, isprime((i+j-2)*2+n+3+(n%2))))); \\ Martin Fuller, Sep 21 2023
CROSSREFS
KEYWORD
nice,nonn
AUTHOR
T. D. Noe, May 23 2002
EXTENSIONS
More terms from Don Reble, May 26 2002
STATUS
approved