Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Sep 21 2023 14:16:04
%S 1,1,1,1,2,4,8,36,40,49,126,121,440,2809,11395,32761,132183,881721,
%T 3015500,19642624,106493895,249987721,1257922092,4609187881,
%U 29262161844,189192811369,1068996265025,7388339422500,67416357342087,465724670229025,1979950199225010
%N Number of ways of pairing numbers 1 to n with numbers n+1 to 2n such that each pair sums to a prime.
%H Martin Fuller, <a href="/A070897/b070897.txt">Table of n, a(n) for n = 1..70</a>
%F a(n) = permanent(m), where the n X n matrix m is defined by m(i,j) = 1 or 0, depending on whether i+j+n is prime or composite, respectively. - _T. D. Noe_, Feb 10 2007
%F a(n) = A071058(n) * A071059(n).
%e a(5)=2 because there are two ways: 1+10, 2+9, 3+8, 4+7, 6+5 and 1+6, 2+9, 3+10, 4+7, 5+8.
%t <<Combinatorica`; listQpart2[ n_ ] := {n-#, #}&/@Range[ Floor[ (n-1)/2 ] ]; Noe[ n_Integer ] := Module[ {it, permoid, po}, it=Union@Flatten[ Cases[ listQpart2[ # ], q_/; Max[ q ]<=2*n&&Max[ q ]>n ]& /@Select[ Range[ n+2, 3*n ], PrimeQ ], 1 ]; po=Position[ it, # ]&/@Range[ n ]; permoid=(Extract[ it, # ]-n)& /@(po /. {i_Integer, j_}->{i, 1} ); Length@Backtrack[ permoid, UnsameQ@@#&, Length[ # ]===n&, All ] ]; Noe/@Range[ 2, 16 ] (* from _Wouter Meeussen_ *)
%t a[n_] := Permanent[Table[If[PrimeQ[i+j+n], 1, 0], {i, n}, {j, n}]]; Table[ an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 16}] (* _Jean-François Alcover_, Feb 26 2016 *)
%o (Haskell)
%o import Data.List (permutations)
%o a070897 n = length $ filter (all ((== 1) . a010051))
%o $ map (zipWith (+) [1..n]) (permutations [n+1..2*n])
%o -- _Reinhard Zumkeller_, Mar 19 2011, Apr 16 2011 (fixed)
%o (PARI) a(n)=my(a071058=matpermanent(matrix((n+1)\2,(n+1)\2,i,j,isprime((i+j-2)*2+n+3-(n%2))))); if(n%2==0, a071058^2, a071058*matpermanent(matrix(n\2,n\2,i,j,isprime((i+j-2)*2+n+3+(n%2))))); \\ _Martin Fuller_, Sep 21 2023
%Y Cf. A000341, A071058, A071059, A073364.
%K nice,nonn
%O 1,5
%A _T. D. Noe_, May 23 2002
%E More terms from _Don Reble_, May 26 2002