|
|
A070899
|
|
a(1)=1, a(n) is the smallest integer > a(n-1) such that the largest element in the simple continued fraction for S(n)=1/a(1)+1/a(2)+...+1/a(n) equals 3n.
|
|
0
|
|
|
1, 6, 13, 16, 49, 71, 124, 188, 298, 326, 333, 354, 440, 797, 832, 954, 1006, 1040, 1280, 1319, 1414, 2038, 2113, 2231, 2291, 2924, 2973, 3107, 3983, 3984, 4331, 4605, 4763, 5756, 6314, 6325, 6402, 7501, 7967, 8073, 8143, 8895, 9567, 9900, 10333
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
sum(k=>1,1/a(k))=C=1.3...
|
|
LINKS
|
|
|
EXAMPLE
|
The continued fraction for S(7)=1+1/6+1/13+1/16+1/49+1/71+1/124 is [1, 2, 1, 6, 1, 1, 2, 3, 3, 1, 21, 1, 1, 3, 1, 3, 18, 3] where the largest element is 21=3*7 and 124 is the smallest integer > a(6)=71 with this property, hence a(7)=124.
|
|
PROG
|
(PARI) s=1; t=1; for(n=1, 60, s=s+1/t; while(abs(3*n-vecmax(contfrac(s+1/t)))>0, t++); print1(t, ", "))
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|