The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070896 Determinant of the Cayley addition table of Z_{n}. 10
 0, -1, -9, 96, 1250, -19440, -352947, 7340032, 172186884, -4500000000, -129687123005, 4086546038784, 139788510734886, -5159146026151936, -204350482177734375, 8646911284551352320, 389289535005334947848, -18580248257778920521728 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(n) is the determinant of the n X n matrix M_(i,j) = ((i+j) mod n) where i and j range from 0 to n-1. - Benoit Cloitre, Nov 29 2002 |a(n)| = number of labeled mappings from n points to themselves (endofunctions) with an even number of cycles. E.g.f.: (1/2)*LambertW(-x)^2/(1+LambertW(-x)). - Vladeta Jovovic, Mar 30 2006 LINKS G. C. Greubel, Table of n, a(n) for n = 1..385 FORMULA a(n) = (-1)^floor(n/2)*(1/2)*(n-1)*n^(n-1). - Benoit Cloitre, Nov 29 2002 EXAMPLE a(3) = -9 because the determinant of {{0,1,2}, {1,2,0}, {2,0,1}} is -9. MATHEMATICA Table[(-1)^Floor[n/2]*(1/2)*(n - 1)*n^(n - 1), {n, 1, 50}] (* G. C. Greubel, Nov 14 2017 *) PROG (PARI) a(n)=(-1)^floor(n/2)*(1/2)*(n-1)*n^(n-1) (MAGMA) [(-1)^Floor(n/2)*(1/2)*(n-1)*n^(n-1): n in [1..50]]; // G. C. Greubel, Nov 14 2017 CROSSREFS Cf. A000312, A052182, A060281, A060435. Sequence in context: A228011 A024116 A264208 * A081131 A338105 A331113 Adjacent sequences:  A070893 A070894 A070895 * A070897 A070898 A070899 KEYWORD sign AUTHOR Santi Spadaro, May 23 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 10:13 EST 2022. Contains 350481 sequences. (Running on oeis4.)