login
A070901
a(1)=1, a(n) is the smallest integer > a(n-1) such that the largest element in the simple continued fraction for S(n)=1/a(1)+1/a(2)+...+1/a(n) equals prime(n).
0
1, 3, 8, 85, 103, 349, 361, 429, 500, 505, 1832, 1895, 1996, 2195, 2202, 2290, 2531, 2575, 2688, 3040, 3189, 3280, 3792, 5103, 5151, 7712, 21398, 21914, 22472, 22603, 22814, 23184, 23375, 24368, 24370, 24545, 24812, 25015, 25262, 25613, 26171
OFFSET
1,2
COMMENTS
Sum(k=>1,1/a(k))=C=1.498...
EXAMPLE
The continued fraction for S(4)=1+1/3+1/8+1/85 is [1, 2, 7, 1, 6, 5, 1, 2] where the largest element is 7=prime(4).
PROG
(PARI) s=1; t=1; for(n=1, 60, s=s+1/t; while(abs(length(contfrac(s+1/t))-vecmax(contfrac(s+1/t)))>0, t++); print1(t, ", "))
CROSSREFS
Sequence in context: A233175 A347920 A367273 * A079657 A136309 A266671
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 19 2002
STATUS
approved