login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071059
Number of ways of pairing even numbers in the range 1 to n with odd numbers in the range n+1 to 2n such that each pair sums to a prime.
3
1, 1, 1, 1, 1, 2, 2, 6, 4, 7, 6, 11, 11, 53, 53, 181, 171, 939, 925, 4432, 4545, 15811, 15583, 67891, 68193, 434963, 388975, 2718150, 3113343, 21580655, 18425145, 92370364, 94887088, 564878656, 572364768, 4545704064, 4092294083, 36878092180, 36363930614
OFFSET
1,6
LINKS
FORMULA
a(2n) = A071058(2n).
EXAMPLE
a(6)=2 because there are two ways: 2+9, 4+7, 6+11 and 2+11, 4+9, 6+7.
MAPLE
f:= proc(n) local m;
m:= floor(n/2);
LinearAlgebra:-Permanent(Matrix(m, m,
(i, j) -> `if`(isprime((i+j-2)*2 + n + 3 + (n mod 2)), 1, 0)))
end proc:
f(1):= 1:
map(f, [$1..40]); # Robert Israel, Sep 21 2023
MATHEMATICA
a[n_] := a[n] = If[n == 1, 1, Module[{s1, s2, s3, s4, i, ik, km},
s1 = Select[Flatten[Outer[List, Range[2, n, 2], Range[2n-1, n+1, -2]], 1], PrimeQ[Total[#]]&];
s2 = SplitBy[s1, First];
km = Length[s2];
ik = Table[{i[k], 1, Length[s2[[k]]]}, {k, 1, km}];
s3 = Table[Table[s2[[k, i[k]]], {k, 1, km}], Evaluate[Sequence @@ ik]] // Flatten[#, km - 1]&;
s4 = Select[s3, Length[Union[Flatten[#]]] == 2km&];
s4 // Length]];
Table[Print[n, " ", a[n]]; a[n], {n, 1, 20}] (* Jean-François Alcover, Aug 10 2022 *)
PROG
(PARI) a(n)=matpermanent(matrix(n\2, n\2, i, j, isprime((i+j-2)*2+n+3+(n%2)))); \\ Martin Fuller, Sep 21 2023
CROSSREFS
The product of this sequence and A071058 gives A070897.
Sequence in context: A074911 A373877 A174222 * A256468 A061108 A284918
KEYWORD
nice,nonn
AUTHOR
T. D. Noe, May 25 2002
EXTENSIONS
More terms from David W. Wilson, May 27 2002
a(31)-a(37) from Donovan Johnson, Aug 12 2010
STATUS
approved