login
A070821
Integer part of n/(lpf(n)*gpf(n)), where lpf = A020639 is the least prime factor and gpf = A006530 the greatest prime factor.
1
1, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 4, 0, 3, 0, 2, 1, 1, 0, 4, 1, 1, 3, 2, 0, 3, 0, 8, 1, 1, 1, 6, 0, 1, 1, 4, 0, 3, 0, 2, 3, 1, 0, 8, 1, 5, 1, 2, 0, 9, 1, 4, 1, 1, 0, 6, 0, 1, 3, 16, 1, 3, 0, 2, 1, 5, 0, 12, 0, 1, 5, 2, 1, 3, 0, 8, 9, 1, 0, 6, 1, 1, 1, 4, 0
OFFSET
1,8
COMMENTS
m/(lpf(m)*gpf(m)) is an integer if and only if m is not prime;
a(m) = 0 iff m is prime (A000040);
for m > 1: a(m) = 1 iff m is semiprime (A001358).
LINKS
FORMULA
a(n) = floor(A032742(n)/A006530(n)) = floor(A052126(n)/A020639(n)).
MATHEMATICA
a[n_] := With[{f = FactorInteger[n]},
Floor[n/(f[[1, 1]]*f[[-1, 1]])]];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 13 2023 *)
PROG
(Scheme) (define (A070821 n) (floor->exact (/ (A032742 n) (A006530 n)))) ;; See under A006530, A020639 and A032742 for further code. - Antti Karttunen, Aug 12 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 15 2002
STATUS
approved