|
|
A070823
|
|
a(1)=0, a(1)=1, a(n+2)=abs(concatenate(a(n+1)a(n))-concatenate(a(n)a(n+1))).
|
|
0
|
|
|
0, 1, 9, 72, 243, 47871, 23523372, 2434786275501, 8244905115337247871, 58101188398354233807319449027630, 243478627550182449084906698122045988902204111779759, 33753325643335988898828779215425644588407139004473126805509723691755094884662752129
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
a(n)==0 mod 3 if n>2. Is a(n) always of the form 2^a*3^b*b(n) where b(n) is a squarefree number? As example : a(12)=3^12*11*192263*58877057*6250682413*588631991107100965223
|
|
LINKS
|
|
|
EXAMPLE
|
a(2)=72 a(3)=243 then a(4)=abs(24372-72243)=47871
|
|
MATHEMATICA
|
nxt[{a_, b_}]:=Module[{ida=IntegerDigits[a], idb=IntegerDigits[b]}, {b, Abs[ FromDigits[ Join[ ida, idb]]-FromDigits[Join[idb, ida]]]}]; Transpose[ NestList[ nxt, {0, 1}, 13]] [[1]] (* Harvey P. Dale, Sep 19 2014 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|