|
|
A070275
|
|
Numbers k such that the sum of the digits of k equals the sum of the prime divisors of k.
|
|
8
|
|
|
2, 3, 5, 7, 84, 160, 250, 336, 468, 735, 936, 975, 1344, 1375, 1408, 1600, 1694, 1872, 2352, 2401, 2500, 2625, 2808, 3744, 3920, 4116, 4913, 5145, 5616, 6084, 6318, 7296, 7497, 7695, 8424, 8624, 8664, 8704, 9126, 9639, 10240, 12168, 12636, 12675, 14896
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
If k=10^s*m is a term of the sequence where s > 0 and gcd(m,10)=1, then for each positive integer j, 10^j*m is in the sequence, because the sum of the digits of 10^j*k equals the sum of the digits of k and the sum of the distinct prime factors of 10^j*k equals the sum of the distinct prime factors of k. Also it is obvious that m isn't in the sequence. [Jahangeer Kholdi, Oct 07 2013]
|
|
LINKS
|
|
|
MATHEMATICA
|
Rest[Select[Range[20000], Total[Transpose[FactorInteger[#]][[1]]] == Total[ IntegerDigits[#]] &]] (* Harvey P. Dale, Dec 15 2010 *)
|
|
PROG
|
(PARI) isok(n) = sumdigits(n) == vecsum(factor(n)[, 1]); \\ Michel Marcus, May 27 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|