OFFSET
1,2
COMMENTS
The product of the distinct prime factors of n (the squarefree kernel of n) is also denoted by rad(n) = A007947(n). - Giovanni Resta, Apr 21 2017
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 71 terms from Harry J. Smith)
EXAMPLE
The prime factors of 375 are 3,5, which have product = 15, the sum of the digits of 375, so 375 is a term of the sequence.
MATHEMATICA
f[n_] := Times@@ (First/@ FactorInteger[n]); g[n_] := Plus @@ IntegerDigits[n]; Select[Range[10^5], f[#] == g[#] &] (* or *)
nd=12; up=10^nd; L={1}; Do[If[SquareFreeQ[su], ps = First /@ FactorInteger[su]; nps = Length@ ps; Clear[ric]; ric[n_, i_] := Block[{e = 0, m}, If[i > nps, If[Plus @@ IntegerDigits[su n] == su, Sow[su n]], While[ (m = n ps[[i]]^e ) su < up, ric[m, i+1]; e++]]]; z = Reap[ ric[1, 1]][[2]]; If[z != {}, L = Union[L, z[[1]]]]], {su, 2, 9 nd}]; L (* fast, terms < 10^12, Giovanni Resta, Apr 21 2017 *)
Select[Range[65*10^5], Times@@FactorInteger[#][[All, 1]]==Total[ IntegerDigits[ #]]&] (* Harvey P. Dale, Dec 16 2018 *)
PROG
(PARI) isok(k)={vecprod(factor(k)[, 1]) == sumdigits(k)} \\ Harry J. Smith, May 06 2010
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Joseph L. Pe, Feb 18 2002
EXTENSIONS
a(19)-a(35) from Donovan Johnson, Sep 29 2009
a(1)=1 prepended by Giovanni Resta, Apr 21 2017
STATUS
approved