login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356981
Numbers k such that the sum of distinct digits of k equals the sum of the prime divisors of k.
1
2, 3, 5, 7, 84, 144, 160, 250, 343, 468, 735, 936, 975, 1125, 1215, 1375, 1408, 1600, 1694, 1872, 2401, 2500, 2646, 2880, 3920, 4913, 6084, 6318, 6860, 7296, 7695, 8624, 8704, 8788, 9126, 10125, 10240, 10816, 11264, 12672, 12675, 14641, 14896, 16000
OFFSET
1,1
COMMENTS
Similar to A070275, where distinctness of digits is not required.
EXAMPLE
144 = 2^4*3^2 and 1+4=2+3. Thus, 144 is in this sequence.
MATHEMATICA
Select[Range[2, 20000], Total[Union[IntegerDigits[#]]] == Total[Transpose[FactorInteger[#]][[1]]] &]
PROG
(Python)
from itertools import count, islice
from sympy import primefactors
def A356981_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda k:sum(int(d) for d in set(str(k)))==sum(primefactors(k)), count(max(startvalue, 1)))
A356981_list = list(islice(A356981_gen(), 30)) # Chai Wah Wu, Sep 12 2022
(PARI) isok(k) = vecsum(Set(digits(k))) == vecsum(factor(k)[, 1]); \\ Michel Marcus, Sep 12 2022
CROSSREFS
Sequence in context: A029976 A074310 A264576 * A070275 A171042 A068827
KEYWORD
nonn,base
AUTHOR
Tanya Khovanova, Sep 09 2022
STATUS
approved