login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070242
a(n) = Card( k>0 : sigma(k)=sigma(n) ).
5
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 3, 2, 2, 1, 1, 3, 2, 1, 3, 3, 2, 3, 1, 2, 1, 5, 2, 1, 3, 2, 3, 1, 1, 3, 2, 3, 3, 4, 1, 3, 1, 5, 3, 2, 1, 1, 5, 2, 2, 4, 5, 4, 2, 3, 3, 6, 1, 4, 2, 1, 3, 5, 1, 2, 4, 5, 5, 1, 1, 2, 2, 2, 4, 6, 2, 2, 1, 2, 3, 3, 2, 2, 4, 4, 3, 3, 1, 6, 2, 5, 4, 6, 2, 1, 2, 1, 1, 5, 2, 2, 5
OFFSET
1,6
LINKS
FORMULA
a(n) = A054973(A000203(n)). - Antti Karttunen, Nov 07 2017
PROG
(PARI) for(n=1, 150, print1(sum(i=1, 10*n, if(sigma(n)-sigma(i), 0, 1)), ", "))
(PARI) A070242(n) = { my(s=sigma(n)); length(select(i->sigma(i) == s, vector(s, i, i))); } \\ Antti Karttunen, Nov 07 2017
(PARI) A070242(n) = { my(s=sigma(n)); sum(k=1, s, (sigma(k)==s)); }; \\ Antti Karttunen, Nov 07 2017
(PARI) a(n) = invsigmaNum(sigma(n)); \\ Amiram Eldar, Dec 20 2024, using Max Alekseyev's invphi.gp
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 09 2002
STATUS
approved