login
A266012
T(n,k)=Number of nXk integer arrays with each element equal to the number of horizontal and antidiagonal neighbors equal to itself.
12
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 4, 6, 1, 1, 2, 4, 4, 14, 1, 1, 1, 1, 11, 9, 22, 2, 1, 1, 4, 18, 27, 14, 46, 1, 1, 2, 4, 27, 61, 70, 21, 102, 1, 1, 1, 1, 43, 75, 154, 182, 44, 190, 2, 1, 1, 4, 62, 281, 486, 473, 483, 52, 374, 1, 1, 2, 4, 112, 697, 1602, 2208, 1561, 1281, 129, 782, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
Table starts
.1.1...2...1....1.....2.......1........1........2........1..........1
.1.1...2...4....4.....1.......4........4........1........4..........4
.1.2...6...4...11....18......27.......43.......62......112........191
.1.1..14...9...27....61......75......281......697.....1182.......3379
.1.1..22..14...70...154.....486.....1602.....5777....10188......28506
.1.2..46..21..182...473....2208....10811....27582....48585.....208339
.1.1.102..44..483..1561...10708....62684...145344...253394....1663567
.1.1.190..52.1281..4909...53384...348557...850986..1738887...15011717
.1.2.374.129.3389.15560..255936..2118339..4845667.10779958..123629847
.1.1.782.138.8986.49716.1264666.12427613.27769481.64933909.1062244523
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-3)
k=3: a(n) = a(n-1) +4*a(n-3)
k=4: a(n) = -a(n-1) +3*a(n-2) +3*a(n-3) -a(n-4)
k=5: a(n) = 2*a(n-1) +2*a(n-2) -a(n-3) +2*a(n-4) -3*a(n-5) -a(n-6) for n>12
k=6: [order 19] for n>21
k=7: [order 24] for n>28
Empirical for row n:
n=1: a(n) = a(n-3)
n=2: a(n) = a(n-3) for n>6
n=3: [order 15] for n>19
n=4: [order 44] for n>53
EXAMPLE
Some solutions for n=4 k=4
..0..1..2..2....1..1..2..2....0..2..2..1....0..2..2..0....1..1..2..2
..1..2..2..0....0..2..2..0....2..2..1..0....2..2..1..0....0..2..2..0
..0..1..2..2....0..1..2..2....0..2..2..1....0..1..2..2....1..1..2..2
..1..2..2..0....1..2..2..0....2..2..1..0....0..2..2..0....0..2..2..0
CROSSREFS
Row 2 is A173259(n+6).
Sequence in context: A070242 A242748 A374163 * A202111 A187759 A358565
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 20 2015
STATUS
approved