login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069957
Expansion of 1/((1-x)^2*(1-x^2)^2*(1-x^3)*(1-x^4)^2*(1-x^5)).
1
1, 2, 5, 9, 18, 30, 51, 79, 124, 183, 270, 382, 540, 740, 1010, 1347, 1789, 2333, 3028, 3873, 4932, 6205, 7772, 9637, 11901, 14571, 17770, 21512, 25948, 31098, 37143, 44113, 52226, 61522, 72258, 84489, 98519, 114418, 132540, 152976, 176139, 202141
OFFSET
0,2
LINKS
G. E. Andrews, P. Paule and A. Riese, MacMahon's Partition Analysis VIII: Plane partition diamonds, Advances Applied Math., 27 (2001), 231-242.
Index entries for linear recurrences with constant coefficients, signature (2, 1, -3, 1, -2, -1, 4, 2, 0, -2, -2, -2, 0, 2, 4, -1, -2, 1, -3, 1, 2, -1).
FORMULA
G.f.: (1-x^3)*(1-x^5)/( Product_{j=1..5} 1-x^j )^2. - G. C. Greubel, Aug 17 2022
MATHEMATICA
CoefficientList[Series[1/((1 - x)^2 (1 - x^2)^2 (1 - x^3) (1 - x^4)^2 (1 - x^5)), {x, 0, 60}], x] (* Vincenzo Librandi, Sep 05 2016 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1-x^3)*(1-x^5)/(&*[1-x^j: j in [1..5]])^2 )); // G. C. Greubel, Aug 17 2022
(Sage)
def A069957_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x^3)*(1-x^5)/(product(1-x^j for j in (1..5)))^2 ).list()
A069957_list(60) # G. C. Greubel, Aug 17 2022
CROSSREFS
Cf. A069950.
Sequence in context: A336141 A184353 A019135 * A091356 A107705 A278690
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 05 2002
STATUS
approved