login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069956
Expansion of (1+x^2)/((1-x)^2*(1-x^2)^2*(1-x^3)^2*(1-x^8)*(1-x^9)*(1-x^10)).
1
1, 2, 6, 12, 23, 40, 67, 104, 160, 235, 340, 480, 669, 913, 1235, 1643, 2165, 2818, 3638, 4646, 5895, 7413, 9264, 11493, 14179, 17377, 21194, 25700, 31023, 37263, 44575, 53080, 62978, 74417, 87633, 102822, 120264, 140193, 162958, 188839
OFFSET
0,2
LINKS
G. E. Andrews, P. Paule and A. Riese, MacMahon's Partition Analysis VIII: Plane partition diamonds, Advances Applied Math., 27 (2001), 231-242.
Index entries for linear recurrences with constant coefficients, signature (2,2,-4,-5,4,11,-4,-13,1,12,0,-9,5,6,-11,-9,15,14, -14,-15,9,11,-6,-5,9,0,-12,-1,13,4,-11,-4,5,4,-2,-2,1).
MATHEMATICA
CoefficientList[Series[(1+x^2)/((1-x)^2(1-x^2)^2(1-x^3)^2 (1-x^8) (1-x^9)*(1-x^10)), {x, 0, 50}], x] (* Harvey P. Dale, Apr 16 2011 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^2)/((1-x)^2(1-x^2)^2(1-x^3)^2 (1-x^8) (1-x^9)*(1-x^10)) )); // G. C. Greubel, Aug 16 2022
(SageMath)
def A069956_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x^2)/((1-x)^2(1-x^2)^2(1-x^3)^2 (1-x^8) (1-x^9)*(1-x^10)) ).list()
A069956_list(50) # G. C. Greubel, Aug 16 2022
CROSSREFS
Sequence in context: A086953 A101953 A084570 * A062476 A192703 A192969
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 05 2002
STATUS
approved