login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091356
Number of planar partitions of n with exactly 2 rows.
5
1, 2, 5, 9, 18, 30, 53, 85, 139, 215, 336, 504, 760, 1115, 1635, 2351, 3375, 4770, 6725, 9368, 13006, 17885, 24510, 33319, 45139, 60743, 81457, 108610, 144334, 190844, 251542, 330082, 431825, 562710, 731154, 946644, 1222305, 1573155, 2019471
OFFSET
2,2
LINKS
FORMULA
a(n) = A000990(n) - A000041(n).
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, add(add(min(d, k)
*d, d=numtheory[divisors](j))*b(n-j, k), j=1..n)/n)
end:
a:= n-> b(n, 2)-b(n, 1):
seq(a(n), n=2..50); # Alois P. Heinz, Oct 02 2018
MATHEMATICA
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[Sum[Min[d, k] d, {d, Divisors[j]}] b[n - j, k], {j, 1, n}]/n];
a[n_] := b[n, 2] - b[n, 1];
a /@ Range[2, 50] (* Jean-François Alcover, Oct 28 2020, after Alois P. Heinz *)
CROSSREFS
Column 2 of A091355.
Sequence in context: A184353 A019135 A069957 * A107705 A278690 A335838
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jan 02 2004
STATUS
approved