login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of planar partitions of n with exactly 2 rows.
5

%I #12 Oct 28 2020 10:22:53

%S 1,2,5,9,18,30,53,85,139,215,336,504,760,1115,1635,2351,3375,4770,

%T 6725,9368,13006,17885,24510,33319,45139,60743,81457,108610,144334,

%U 190844,251542,330082,431825,562710,731154,946644,1222305,1573155,2019471

%N Number of planar partitions of n with exactly 2 rows.

%H Alois P. Heinz, <a href="/A091356/b091356.txt">Table of n, a(n) for n = 2..10000</a>

%F a(n) = A000990(n) - A000041(n).

%p b:= proc(n, k) option remember; `if`(n=0, 1, add(add(min(d, k)

%p *d, d=numtheory[divisors](j))*b(n-j, k), j=1..n)/n)

%p end:

%p a:= n-> b(n, 2)-b(n, 1):

%p seq(a(n), n=2..50); # _Alois P. Heinz_, Oct 02 2018

%t b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[Sum[Min[d, k] d, {d, Divisors[j]}] b[n - j, k], {j, 1, n}]/n];

%t a[n_] := b[n, 2] - b[n, 1];

%t a /@ Range[2, 50] (* _Jean-François Alcover_, Oct 28 2020, after _Alois P. Heinz_ *)

%Y Column 2 of A091355.

%Y Cf. A000219, A091357, A091358, A091359, A091360.

%K nonn

%O 2,2

%A _Christian G. Bower_, Jan 02 2004