login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069813
Maximum number of triangles in polyiamond with perimeter n.
5
1, 2, 3, 6, 7, 10, 13, 16, 19, 24, 27, 32, 37, 42, 47, 54, 59, 66, 73, 80, 87, 96, 103, 112, 121, 130, 139, 150, 159, 170, 181, 192, 203, 216, 227, 240, 253, 266, 279, 294, 307, 322, 337, 352, 367, 384, 399, 416, 433, 450, 467, 486, 503, 522, 541, 560, 579
OFFSET
3,2
LINKS
FORMULA
a(n) = round(n^2/6) - (0 if n = 0 mod 6, 1 else) = A056829(n)-A097325(n).
From Colin Barker, Jan 18 2015: (Start)
a(n) = round((-25 + 9*(-1)^n + 8*exp(-2/3*i*n*Pi) + 8*exp((2*i*n*Pi)/3) + 6*n^2)/36), where i=sqrt(-1).
G.f.: x^3*(1+x-x^2)*(1+x^2) / ((1-x)^3*(1+x)*(1+x+x^2)). (End)
a(n) = A001399(n-3) + A001399(n-4) + A001399(n-6) - A001399(n-7). - R. J. Mathar, Jul 14 2015
EXAMPLE
a(10) = 16 because the maximum number of triangles in a polyiamond of perimeter 10 is 16.
MAPLE
A069813 := proc(n)
round(n^2/6) ;
if modp(n, 6) <> 0 then
%-1 ;
else
% ;
end if;
end proc: # R. J. Mathar, Jul 14 2015
MATHEMATICA
LinearRecurrence[{1, 1, 0, -1, -1, 1}, {1, 2, 3, 6, 7, 10}, 60] (* Jean-François Alcover, Jan 03 2020 *)
PROG
(PARI) a(n) = round(n^2/6) - (n % 6 != 0) \\ Michel Marcus, Jul 17 2013
(PARI) Vec(x^3*(x^2-x-1)*(x^2+1)/((x-1)^3*(x+1)*(x^2+x+1)) + O(x^60)) \\ Colin Barker, Jan 19 2015
(Magma) R<x>:=PowerSeriesRing(Integers(), 65); Coefficients(R!( x^3*(x^2-x-1)*(x^2+1)/((x-1)^3*(x+1)*(x^2+x+1)))); // Marius A. Burtea, Jan 03 2020
CROSSREFS
Sequence in context: A331075 A378595 A062720 * A266534 A293392 A161336
KEYWORD
nonn,easy
AUTHOR
Winston C. Yang (winston(AT)cs.wisc.edu), Apr 30 2002
STATUS
approved