login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067176
A triangle of generalized Stirling numbers: sum of consecutive terms in the harmonic sequence multiplied by the product of their denominators.
6
0, 1, 0, 3, 1, 0, 11, 5, 1, 0, 50, 26, 7, 1, 0, 274, 154, 47, 9, 1, 0, 1764, 1044, 342, 74, 11, 1, 0, 13068, 8028, 2754, 638, 107, 13, 1, 0, 109584, 69264, 24552, 5944, 1066, 146, 15, 1, 0, 1026576, 663696, 241128, 60216, 11274, 1650, 191, 17, 1, 0, 10628640
OFFSET
0,4
COMMENTS
In the Coupon Collector's Problem with n types of coupon, the expected number of coupons required until there are only k types of coupon uncollected is a(n,k)*k!/(n-1)!.
If n+k is even, then a(n,k) is divisible by (n+k+1). For n>=k and k>= 0, a(n,k) = (n-k)!*H(k+1,n-k), where H(m,n) is a generalized harmonic number, i.e., H(0,n) = 1/n and H(m,n) = Sum_{j=1..n} H(m-1,j). - Leroy Quet, Dec 01 2006
This triangle is the same as triangle A165674, which is generated by the asymptotic expansion of the higher order exponential integral E(x,m=2,n), minus the first right hand column. - Johannes W. Meijer, Oct 16 2009
FORMULA
a(n, k) = (n!/k!)*Sum_{j=k+1..n} 1/j = (A000254(n) - A000254(k)*A008279(n, n-k))/A000142(k) = a(n-1, k)*n + (n-1)!/k! = (a(n, k-1)-n!/k!)/k.
a(n, k) = Sum_{i=1..n-k} i*k^(i-1)*abs(stirling1(n-k, i)). - Vladeta Jovovic, Feb 02 2003
EXAMPLE
Rows start 0; 1,0; 3,1,0; 11,5,1,0; 50,26,7,1,0; 274,154,47,9,1,0 etc. a(5,2) = 3*4*5*(1/3 + 1/4 + 1/5) = 4*5 + 3*5 + 3*4 = 20 + 15 + 12 = 47.
MATHEMATICA
T[0, k_] := 1; T[n_, k_] := T[n, k] = Sum[ i*k^(i - 1)*Abs[StirlingS1[n - k, i]], {i, 1, n - k}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* G. C. Greubel, Jan 21 2017 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Henry Bottomley, Jan 09 2002
STATUS
approved