The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066542 Nonnegative integers all of whose anti-divisors are either 2 or odd. 2
3, 4, 5, 7, 8, 11, 13, 16, 17, 19, 23, 29, 31, 32, 37, 41, 43, 47, 53, 59, 61, 64, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
See A066272 for definition of anti-divisor.
The following conjectures have been proved by Bob Selcoe. - Michael Somos, Feb 28 2014
Additional conjectures suggested by computational experiments:
1) Numbers all of whose anti-divisors (AD's) are odd => {2^k} (A000079).
2) Numbers with AD 2, all other AD's odd => primes (A000040).
3) Numbers none of whose AD's are multiples of 3 => 3*2^k (A007283).
4) Numbers all of whose AD's are even => 3*A002822 = A040040 (except for a(0)=1), both related to twin prime pairs.
Calculations suggest the following conjecture. This sequence consists of all odd primes and nonnegative powers of 2 and no other terms. This has been verified for to n=100000. Robert G. Wilson v extended the conjecture out to 2^20.
From Bob Selcoe, Feb 24 2014: (Start)
The sequence consists of all odd primes and powers of two (>=2^2) and no other terms.
Proof: Denote the even anti-divisors of n as ADe(n). ADe(n) is defined as the set of numbers x satisfying the equation n(mod x)=x/2. Substitute x = 2n/y, since it can be shown that ADe(n) => 2n divided by the odd divisors of n when n>1 (This is because 2j anti-divides only numbers of the form 3j+2j*k; j>=1, k>=0. For example: j=7; 14 anti-divides only 21,35,49,63.... So in other words, even numbers anti-divide only odd multiples (>=3) of themselves, divided by 2). Therefore, ADe(n) is n(mod [2n/y])=n/y, and y must be an odd divisor of n and 2n, y>1. Since y is the only odd divisor of n when y>1 iff n is prime, then ADe(n) => 2 when n is prime. Since 2n has no odd divisors when n=2^k, then ADe(n) is null when n=2^k. Therefore, the only numbers whose anti-divisors are either 2 or odd must be primes and powers of 2.
Similarly, for odd anti-divisors (ADo(n)): Given 2j+1 (odd numbers) anti-divide only numbers of the forms [(3j+1)+(2j+1)*k] and [(3j+2)+(2j+1)*k]; j>=1, k>=0. (For example: j=6; 13 anti-divides only 19,20, 32,33, 45,46...). Since odd n divided by its odd divisors ARE its odd divisors, then ADo(n) => the divisors of 2n-1 and 2n+1 (except 1, 2n-1 and 2n+1).
By extension:
1) Numbers all of whose anti-divisors (AD's) are odd => {2^k} (A000079).
2) Numbers with ADe(n)=2, all other AD's odd => primes (A000040).
3) Numbers none of whose AD's are multiples of j => j*2^k.
4) When 2n-1 and 2n+1 are twin primes, (A040040, except for a(0)=1) then n has only even AD's.
(End)
If 1 and 2 are included, this sequence contains all positive integers not contained in A111774. - Bob Selcoe, Sep 09 2014 [corrected by Wolfdieter Lang, Nov 06 2020]
LINKS
EXAMPLE
From Bob Selcoe, Feb 24 2014: (Start)
ADe(420): Odd divisors of 420 are: 3,5,7,15,21,35, 105. ADe(420) => 840/{3,5,7,15,21,35,105} = 8,24,40,56,120,168 and 280.
ADo(420) => the divisors of 839 and 841, which are (a) for 839: null (839 is prime); and (b) for 841: 29 (841 is 29^2).
All AD's (AD(420)) => 8,24,29,40,56,120,168 and 280 (End)
MATHEMATICA
antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 &], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 &], 2n / Select[ Divisors[2*n], OddQ[ # ] && # != 1 &]]], # < n & ]; f[n_] := Select[ antid[n], EvenQ[ # ] && # > 2 & ]; Select[ Range[3, 300], f[ # ] == {} & ]
CROSSREFS
Sequence in context: A108372 A325131 A270342 * A003310 A038525 A268678
KEYWORD
nonn
AUTHOR
John W. Layman, Jan 07 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 12:25 EDT 2024. Contains 373481 sequences. (Running on oeis4.)