login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066545 Number of spanning trees in the line graph of the product of two complete graph, each of order n, L(K_n x K_n). 1
4, 782757789696, 391497025772177207236260602767731880976449536, 79571717825565862744861159703491334416072984127575634790474236302905519522005340085288960000000000000000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

a(2) = 2^2, a(3) = 2^30 * 3^6, a(4) = 2^99 * 3^31, a(5) = 2^314 * 5^22. - Gerald McGarvey, Oct 20 2007

LINKS

Table of n, a(n) for n=2..5.

EXAMPLE

NumberOfSpanningTrees(L(K_2 x K_2)) = 4.

MATHEMATICA

NumberOfSpanningTrees[LineGraph[GraphProduct[CompleteGraph[n], CompleteGraph[n]]]] (* First load package DiscreteMath`Combinatorica` *)

CROSSREFS

Sequence in context: A034250 A058436 A067501 * A161405 A147876 A164796

Adjacent sequences:  A066542 A066543 A066544 * A066546 A066547 A066548

KEYWORD

hard,nonn

AUTHOR

Roberto E. Martinez II, Jan 07 2002

EXTENSIONS

Edited by Dean Hickerson, Jan 14, 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 09:29 EST 2019. Contains 329054 sequences. (Running on oeis4.)