login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066356
Numerator of sequence defined by recursion c(n) = 1 + c(n-2) / c(n-1), c(0) = 0, c(1) = 1.
1
0, 1, 1, 2, 3, 7, 23, 167, 3925, 661271, 2609039723, 1728952269242533, 4516579101127820242349159, 7812958861560974806259705508894834509747, 35298563436210937269618773778802420542715366288238091341051372773
OFFSET
0,4
COMMENTS
a(i) and a(j) are relative prime for all i>j>0.
An infinite coprime sequence defined by recursion.
FORMULA
a(n) = (2 * a(n - 1) * a(n - 2)^2 - a(n - 1)^2 * a(n - 4) - a(n - 2)^3 * a(n - 3)) / (a(n - 2) - a(n - 3) * a(n - 4)).
a(n) = b(n) + b(n-1) * a(n-2) where b(n) = A064184(n).
MATHEMATICA
nxt[{a_, b_}]:={b, 1+a/b}; NestList[nxt, {0, 1}, 20][[All, 1]]//Numerator (* Harvey P. Dale, Sep 26 2016 *)
PROG
(PARI) {a(n) = if( n<4, max(0, n) - (n>1), (2 * a(n-1) * a(n-2)^2 - a(n-1)^2 * a(n-4) - a(n-2)^3 * a(n-3)) / (a(n-2) - a(n-3) * a(n-4)))}
CROSSREFS
Cf. A001685, A002715, A003686, A006695, A064184 (denominators), A064526.
Sequence in context: A001064 A108176 A111235 * A006892 A296397 A102710
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Dec 21 2001
STATUS
approved