Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 22 2019 08:02:51
%S 0,1,1,2,3,7,23,167,3925,661271,2609039723,1728952269242533,
%T 4516579101127820242349159,7812958861560974806259705508894834509747,
%U 35298563436210937269618773778802420542715366288238091341051372773
%N Numerator of sequence defined by recursion c(n) = 1 + c(n-2) / c(n-1), c(0) = 0, c(1) = 1.
%C a(i) and a(j) are relative prime for all i>j>0.
%C An infinite coprime sequence defined by recursion.
%F a(n) = (2 * a(n - 1) * a(n - 2)^2 - a(n - 1)^2 * a(n - 4) - a(n - 2)^3 * a(n - 3)) / (a(n - 2) - a(n - 3) * a(n - 4)).
%F a(n) = b(n) + b(n-1) * a(n-2) where b(n) = A064184(n).
%t nxt[{a_,b_}]:={b,1+a/b}; NestList[nxt,{0,1},20][[All,1]]//Numerator (* _Harvey P. Dale_, Sep 26 2016 *)
%o (PARI) {a(n) = if( n<4, max(0, n) - (n>1), (2 * a(n-1) * a(n-2)^2 - a(n-1)^2 * a(n-4) - a(n-2)^3 * a(n-3)) / (a(n-2) - a(n-3) * a(n-4)))}
%Y Cf. A001685, A002715, A003686, A006695, A064184 (denominators), A064526.
%K nonn,easy
%O 0,4
%A _Michael Somos_, Dec 21 2001