login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296397
a(n) = a(n-1) * a(n-2) + a(n-3) * Product_{k=0..n-4} a(k)^2, with a(0) = a(1) = 1, a(2) = 2.
0
1, 1, 2, 3, 7, 23, 173, 4231, 772535, 3430031573, 2767984611331999, 9880508763685677890784167, 28372546978138838124644984908123272195533, 290052121708444744262218759616469916140851065875997330620050069911
OFFSET
0,3
COMMENTS
The recurrence for b(n) is similar to Fibonacci except for the reciprocal.
An infinite coprime sequence defined by recursion. - Michael Somos, Dec 14 2017
LINKS
Michael Penn, 2 viewer suggested recursive sequences., YouTube video, 2021.
Larry Powell, Any insight in the half reciprocal Fibonacci sequence? Math StackExchange, Dec 11 2017.
FORMULA
a(n) = a(n-1) * a(n-2) + a(n-1) * a(n-3) * a(n-4) - a(n-2) * a(n-3)^2 * a(n-4) for all n>=4.
a(n) = numerator of b(n) where b(0) = b(1) = 1, b(n) = b(n-1) + 1/b(n-2).
MATHEMATICA
a[ n_] := Which[ n < 1, Boole[n == 0], n < 4, n, True, a[n - 1] a[n - 2] + a[n - 3] Product[ a[k], {k, 0, n - 4}]^2];
Numerator@ RecurrenceTable[{a[n] == a[n - 1] + 1/a[n - 2], a[0] == a[1] == 1}, a, {n, 0, 13}] (* Robert G. Wilson v, Dec 11 2017 *)
PROG
(PARI) {a(n) = if( n<1, n==0, n<4, n, a(n-1) * a(n-2) + a(n-3) * prod(k=0, n-4, a(k))^2)};
CROSSREFS
Sequence in context: A111235 A066356 A006892 * A102710 A048824 A355015
KEYWORD
nonn
AUTHOR
Michael Somos, Dec 11 2017
STATUS
approved