login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(n-1) * a(n-2) + a(n-3) * Product_{k=0..n-4} a(k)^2, with a(0) = a(1) = 1, a(2) = 2.
0

%I #22 Mar 08 2021 09:20:00

%S 1,1,2,3,7,23,173,4231,772535,3430031573,2767984611331999,

%T 9880508763685677890784167,28372546978138838124644984908123272195533,

%U 290052121708444744262218759616469916140851065875997330620050069911

%N a(n) = a(n-1) * a(n-2) + a(n-3) * Product_{k=0..n-4} a(k)^2, with a(0) = a(1) = 1, a(2) = 2.

%C The recurrence for b(n) is similar to Fibonacci except for the reciprocal.

%C An infinite coprime sequence defined by recursion. - _Michael Somos_, Dec 14 2017

%H Michael Penn, <a href="https://youtu.be/T_lHqiW81sw?t=377">2 viewer suggested recursive sequences.</a>, YouTube video, 2021.

%H Larry Powell, <a href="http://math.stackexchange.com/questions/2561924">Any insight in the half reciprocal Fibonacci sequence?</a> Math StackExchange, Dec 11 2017.

%F a(n) = a(n-1) * a(n-2) + a(n-1) * a(n-3) * a(n-4) - a(n-2) * a(n-3)^2 * a(n-4) for all n>=4.

%F a(n) = numerator of b(n) where b(0) = b(1) = 1, b(n) = b(n-1) + 1/b(n-2).

%t a[ n_] := Which[ n < 1, Boole[n == 0], n < 4, n, True, a[n - 1] a[n - 2] + a[n - 3] Product[ a[k], {k,0, n - 4}]^2];

%t Numerator@ RecurrenceTable[{a[n] == a[n - 1] + 1/a[n - 2], a[0] == a[1] == 1}, a, {n, 0, 13}] (* _Robert G. Wilson v_, Dec 11 2017 *)

%o (PARI) {a(n) = if( n<1, n==0, n<4, n, a(n-1) * a(n-2) + a(n-3) * prod(k=0, n-4, a(k))^2)};

%K nonn

%O 0,3

%A _Michael Somos_, Dec 11 2017