|
|
A065713
|
|
Sum of digits of 4^n.
|
|
13
|
|
|
1, 4, 7, 10, 13, 7, 19, 22, 25, 19, 31, 25, 37, 40, 43, 37, 58, 61, 64, 67, 61, 46, 58, 70, 73, 76, 79, 82, 85, 70, 82, 85, 88, 109, 103, 70, 109, 130, 106, 100, 112, 124, 118, 112, 115, 118, 139, 151, 127, 112, 115, 118, 121, 142, 145, 121, 160
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = A001370(2n). Results given there imply a(n) > log_4(n) + 1/2, n > 0, but we can conjecture & expect a(n) ~ 9*log_10(2)*n. - M. F. Hasler, May 18 2017
|
|
MATHEMATICA
|
|
|
PROG
|
(PARI) SumD(x)= { local(s=0); while (x>9, s+=x-10*(x\10); x\=10); return(s + x) } { for (n=0, 1000, a=SumD(4^n); write("b065713.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 27 2009
|
|
CROSSREFS
|
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), this sequence (k=4), A066001 (k=5), A066002 (k=6), A066003(k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|