login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of digits of 4^n.
13

%I #32 Dec 04 2024 15:40:25

%S 1,4,7,10,13,7,19,22,25,19,31,25,37,40,43,37,58,61,64,67,61,46,58,70,

%T 73,76,79,82,85,70,82,85,88,109,103,70,109,130,106,100,112,124,118,

%U 112,115,118,139,151,127,112,115,118,121,142,145,121,160

%N Sum of digits of 4^n.

%H Harry J. Smith, <a href="/A065713/b065713.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = A007953(A000302(n)). - _Michel Marcus_, Nov 01 2013 [corrected by _Georg Fischer_, Dec 19 2020]

%F a(n) = A001370(2n). Results given there imply a(n) > log_4(n) + 1/2, n > 0, but we can conjecture & expect a(n) ~ 9*log_10(2)*n. - _M. F. Hasler_, May 18 2017

%t Table[Total[IntegerDigits[4^n]], {n, 0, 60}] (* _Vincenzo Librandi_, Oct 08 2013 *)

%o (PARI) a065713(n)=sumdigits(4^n); \\ _Michel Marcus_, Nov 01 2013

%Y Cf. A000302, A007953.

%Y Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), this sequence (k=4), A066001 (k=5), A066002 (k=6), A066003(k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).

%K nonn,base

%O 0,2

%A _N. J. A. Sloane_, Dec 11 2001