login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065714
Number of 3's in decimal expansion of 2^n.
11
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 3, 0, 1, 1, 1, 1, 1, 0, 1, 0, 4, 1, 3, 0, 1, 0, 1, 1, 1, 0, 3, 1, 3, 0, 2, 0, 1, 2, 0, 1, 2, 2, 0, 2, 3, 0, 4, 1, 3, 1, 4, 2, 1, 1, 1, 2, 3, 2, 3, 1, 2, 4, 1, 4, 3, 0, 3, 2, 3, 4, 4, 3, 3, 2, 1, 3, 0, 0, 4, 2, 2, 6, 1, 4, 4, 2
OFFSET
0,26
LINKS
EXAMPLE
2^5 = 32 so a(5)=1.
MATHEMATICA
Table[ Count[ IntegerDigits[2^n], 3], {n, 0, 100} ]
PROG
(PARI) a(n) = #select(x->(x==3), digits(2^n)); \\ Michel Marcus, Jun 15 2018
(Python)
def A065714(n):
return str(2**n).count('3') # Chai Wah Wu, Feb 14 2020
CROSSREFS
Cf. 0's A027870, 1's A065712, 2's A065710, 4's A065715, 5's A065716, 6's A065717, 7's A065718, 8's A065719, 9's A065744.
Sequence in context: A101949 A124796 A343858 * A110700 A375032 A338939
KEYWORD
nonn,base
AUTHOR
Benoit Cloitre, Dec 04 2001
EXTENSIONS
More terms from Robert G. Wilson v, Dec 07 2001
STATUS
approved