login
A064784
Difference between n-th triangular number t(n) and the largest square <= t(n).
8
0, 2, 2, 1, 6, 5, 3, 0, 9, 6, 2, 14, 10, 5, 20, 15, 9, 2, 21, 14, 6, 28, 20, 11, 1, 27, 17, 6, 35, 24, 12, 44, 32, 19, 5, 41, 27, 12, 51, 36, 20, 3, 46, 29, 11, 57, 39, 20, 0, 50, 30, 9, 62, 41, 19, 75, 53, 30, 6, 66, 42, 17, 80, 55, 29, 2, 69, 42, 14, 84, 56, 27, 100, 71, 41, 10, 87, 56
OFFSET
1,2
COMMENTS
The second differences of a(n) - (a(n)-a(n-1))-(a(n-1)-a(n-2)) - give 2, -2, -1, 6, -6, -1, -1, 12, -12, -1, 16, -16, -1 ... 82k+2, 82k-2, -1, 82k+6, 82k-6, -1, -1, 82k+12, 82k-12, -1, 82k+16, -82k-16, -1, 82k+20, -82k-20, -1, -1, 82k+26, -82k-26, -1, 82k+30, -82k-30, -1, -1, 82k+36, -82k-36, -1, 82k+40, -82k-40, -1, 82k+44, -82k-44, -1, -1, 82k+50, -82k-50, -1, 82k+54, -82k-54, -1, -1, 82k+60, -82k-60, -1, 82k+64, -82k-64, -1, -1, 82k+70, -82k-70, -1, 82k+74, -82k-74, -1, 82k+78, -82k-78, -1, -1, ...
LINKS
J. C. Lagarias, E. M. Rains and N. J. A. Sloane, The EKG sequence, Exper. Math. 11 (2002), 437-446.
J. C. Lagarias, E. M. Rains and N. J. A. Sloane, The EKG sequence, arXiv:math/0204011 [math.NT], 2002.
FORMULA
a(n) = n*(n+1)/2 - floor(sqrt(n*(n+1)/2))^2.
a(n) = A053186(A000217(n)). - R. J. Mathar, Sep 10 2016
a(A001108(n)) = 0. - Hugo Pfoertner, Jun 01 2024
EXAMPLE
n = 5: A000217(5) = 28, largest square below that is 25, so a(5) = 28 - 25 = 3.
MAPLE
seq(n*(n+1)/2-floor(sqrt(n*(n+1)/2))^2, n=0..100);
MATHEMATICA
f[n_]:=n*(n+1)/2-Floor[Sqrt[n*(n+1)/2]]^2; lst={}; Do[AppendTo[lst, f[n]], {n, 0, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 17 2010 *)
#-Floor[Sqrt[#]]^2&/@Accumulate[Range[100]] (* Harvey P. Dale, Oct 15 2014 *)
PROG
(PARI) { default(realprecision, 100); for (n=1, 1000, t=n*(n + 1)/2; a=t - floor(sqrt(t))^2; write("b064784.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 25 2009
(Python)
from math import isqrt
def A064784(n): return (m:=n*(n+1)>>1)-isqrt(m)**2 # Chai Wah Wu, Jun 01 2024
CROSSREFS
Cf. A001108, A076816, A128549, A230038. Unique values are in A230044.
Sequence in context: A109152 A130469 A106381 * A174302 A108074 A189175
KEYWORD
nonn,look
AUTHOR
Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 20 2001
EXTENSIONS
Definition corrected by Harry J. Smith, Sep 25 2009
Terms corrected by Harry J. Smith, Sep 25 2009
STATUS
approved