

A230038


Distance between n^2 and the smallest triangular number >= n^2.


2



0, 2, 1, 5, 3, 0, 6, 2, 10, 5, 15, 9, 2, 14, 6, 20, 11, 1, 17, 6, 24, 12, 32, 19, 5, 27, 12, 36, 20, 3, 29, 11, 39, 20, 0, 30, 9, 41, 19, 53, 30, 6, 42, 17, 55, 29, 2, 42, 14, 56, 27, 71, 41, 10, 56, 24, 72, 39, 5, 55, 20, 72, 36, 90, 53, 15, 71, 32, 90, 50, 9, 69, 27, 89, 46, 2, 66, 21, 87, 41, 109, 62
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Smallest positive Z such that x^2 + x  2n^2  2Z = 0 has a solution in integer x.
a(A077241(m)) = 2.
Apparently, a(n) is triangular itself if n is of form (2k+1)*A001109(m), whenever k < A003499(m), or m > some small constant, k >= 0 (see A230060). [Comment improved by Nathaniel Johnston, Oct 08 2013]


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000


EXAMPLE

The smallest triangular number >= 7^2 is 55 and 5549=6, so a(7)=6.


MAPLE

a := proc(n) local t: t := ceil((sqrt(1 + 8*n^2)  1)/2): return t*(t+1)/2  n^2: end proc: seq(a(n), n=1..100); # Nathaniel Johnston, Oct 08 2013


MATHEMATICA

Module[{nn=200, tr}, tr=Accumulate[Range[nn]]; Table[SelectFirst[tr, #>=n^2&]n^2, {n, Floor[Sqrt[tr[[1]]]]}]] (* Harvey P. Dale, Sep 17 2022 *)


PROG

(PARI) a(n)=t=floor((sqrt(8*n^2)1)/2)+1; t*(t+1)/2n^2


CROSSREFS

Cf. A064784.
Sequence in context: A185131 A199660 A141483 * A277448 A177760 A329440
Adjacent sequences: A230035 A230036 A230037 * A230039 A230040 A230041


KEYWORD

nonn


AUTHOR

Ralf Stephan, Oct 08 2013


STATUS

approved



