login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064785
Number of partially labeled trees with n nodes (6 of which are labeled).
2
1296, 16807, 134960, 858578, 4741835, 23786827, 111254536, 493289047, 2096891419, 8614217489, 34402073301, 134162057607, 512703873915, 1925300176534, 7120276125066, 25981116938906, 93678940211218
OFFSET
6,1
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
FORMULA
G.f.: A(x) = B(x)^6*(1296-2633*B(x)+2128*B(x)^2-806*B(x)^3+120*B(x)^4)/(1-B(x))^9, where B(x) is g.f. for rooted trees with n nodes, cf. A000081.
MAPLE
b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n, k) option remember; add(b(n+1-j*k), j=1..iquo(n, k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-2)^6* (1296-2633* B(n-2)+ 2128*B(n-2)^2 -806*B(n-2)^3 +120*B(n-2)^4)/ (1-B(n-2))^9, x=0, n+1), x, n): seq(a(n), n=6..22); # Alois P. Heinz, Aug 22 2008
MATHEMATICA
jmax = 23; B[_] = 0;
Do[B[x_] = x*Exp[Sum[B[x^k]/k, {k, 1, j}]]+O[x]^j // Normal, {j, 1, jmax}];
A[x_] = B[x]^6*(1296 - 2633*B[x] + 2128*B[x]^2 - 806*B[x]^3 + 120*B[x]^4)/ (1 - B[x])^9;
CoefficientList[A[x] + O[x]^jmax, x] // Drop[#, 6]& (* Jean-François Alcover, Apr 25 2022 *)
CROSSREFS
Column k=6 of A034799.
Cf. A042977.
Sequence in context: A250438 A221006 A016864 * A223560 A016912 A330980
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Oct 19 2001
STATUS
approved