login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060503
Primes p that have a primitive root between 0 and p that is not a primitive root of p^2.
8
2, 29, 37, 43, 71, 103, 109, 113, 131, 181, 191, 211, 257, 263, 269, 283, 349, 353, 359, 367, 373, 397, 439, 449, 461, 487, 509, 563, 599, 617, 619, 631, 641, 647, 653, 701, 739, 743, 773, 797, 839, 857, 863, 883, 887, 907, 919, 947, 971, 983, 1019, 1031
OFFSET
1,1
COMMENTS
The smallest primitive roots of p that are not primitive roots of p^2 are in A060504.
Except for the initial term 2, this is a subsequence of A134307. - Jeppe Stig Nielsen, Jul 31 2015
LINKS
EXAMPLE
14 is a primitive root of 29 but not of 29^2, so 29 is a term.
MAPLE
filter:= proc(p) local x;
if not isprime(p) then return false fi;
x:= 0;
do
x:= numtheory:-primroot(x, p);
if x = FAIL then return false fi;
if x &^ (p-1) mod p^2 = 1 then return true fi;
od
end proc:
select(filter, [2, seq(i, i=3..2000, 2)]); # Robert Israel, Dec 01 2016
MATHEMATICA
Reap[For[p = 2, p < 1100, p = NextPrime[p], prp = PrimitiveRootList[p]; prp2 = Select[PrimitiveRootList[p^2], # <= Last[prp]&]; If[AnyTrue[prp, FreeQ[prp2, #]&], Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Feb 26 2019 *)
PROG
(PARI) forprime(p=2, , for(a=1, p-1, if(znorder(Mod(a, p))==p-1&Mod(a, p^2)^(p-1)==1, print1(p, ", "); break()))) \\ Jeppe Stig Nielsen, Jul 31 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Jud McCranie, Mar 22 2001
STATUS
approved