OFFSET
0,2
COMMENTS
The series arises in the asymptotic expansion of the Airy function A(x) for large |x| as Ai(x) ~ (Pi^(-1/2)/2)*x^(-1/4)*exp(-z)*(Sum_{k>=0} (-1)^k*c(k)*z^(-k)), where z = (2/3)*x^(3/2). a(k) is the numerator of the fully canceled c(k).
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
NIST's Digital Library of Mathematical Functions, Airy and Related Functions (Poincaré-Type Expansions) by Frank W. J. Olver.
FORMULA
a(n) = numerator((Product_{k=1..3*n-1} (2*k+1))/(216^n*n!)). [Corrected by Sean A. Irvine, Nov 26 2022]
EXAMPLE
a(2)=385 because for n=2, (Product_{k=1..3*n-1} (2*k+1))/(216^n*n!) = 385/3456 and we take the numerator of the fully canceled fraction.
MATHEMATICA
a[ n_] := Numerator[Product[k, {k, 1, 6 n - 1, 2}] / n! / 216^n] (* Michael Somos, Oct 14 2011 *)
CROSSREFS
KEYWORD
easy,frac,nonn
AUTHOR
Michael Praehofer (praehofer(AT)ma.tum.de), Mar 22 2001
STATUS
approved