login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193126
Numbers of spanning trees of the Andrásfai graphs.
2
1, 5, 392, 130691, 116268789, 217138318913, 735586507699560, 4097541199291485383, 34978630555104539011865, 433956321312627533863411229, 7507648403517784836450716354400, 175224359120863022267621776711423115, 5369536232535958477000676021964993713773
OFFSET
1,2
COMMENTS
Is it obvious that, beyond the prime a(2) = 5, all values shown are not squarefree (i.e., in A013929). For example, a(10) = 29 * 59^2 * 65564989939^2. - Jonathan Vos Post, Jul 16 2011
LINKS
Eric Weisstein's World of Mathematics, Andrásfai Graph
Eric Weisstein's World of Mathematics, Spanning Tree
MAPLE
with(LinearAlgebra):
a:= proc(n) local h, i, M, m;
m:= 3*n-1;
M:= Matrix(m, shape=symmetric);
for h in [seq(seq(`if`(irem(j-i, 3)=1, [i, j], NULL),
i=1..j-1), j=2..m)]
do M[h[]]:= -1 od;
for i to m do M[i, i]:= -add(M[i, j], j=1..m) od;
Determinant(DeleteColumn(DeleteRow(M, 1), 1))
end:
seq(a(n), n=1..20); # Alois P. Heinz, Jul 18 2011
MATHEMATICA
a[n_] := Module[{M, m = 3n-1}, M[_, _] = 0; Do[M[Sequence @@ h] = -1, {h, Flatten[Table[Table[If[Mod[j - i, 3] == 1, {i, j}, Nothing], {i, 1, j - 1}], {j, 2, m}], 1]}]; For[i = 1, i <= m, i++, M[i, i] = -Sum[If[j >= i, M[i, j], M[j, i]], {j, 1, m}]]; Det[Table[If[j >= i, M[i, j], M[j, i]], {i, 2, m}, {j, 2, m}]]];
Array[a, 20](* Jean-François Alcover, Nov 12 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A060506 A302394 A057633 * A006700 A079011 A195502
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jul 16 2011
EXTENSIONS
More terms from Alois P. Heinz, Jul 18 2011
STATUS
approved